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We numerically simulate the traveling time of a tracer in convective flow between two giijastion and
extraction) separated by a distancen a model of porous medial=2 percolation. We calculate and analyze
the traveling time probability density function for two values of the fraction of connecting bpndse
homogeneous cage=1 and the inhomogeneous critical threshold cpsep.. We analyze both constant
current and constant pressure conditionpatp.. The homogeneous=1 case serves as a comparison base
for the more complicate@= p, situation. We find several regions in the probability density of the traveling
times for the homogeneous cage=(1) and also for the critical cas@€ p.) for both constant pressure and
constant current conditions. For constant pressure, the first regicordesponds to the short times before the
flow breakthrough occurs, when the probability distribution is strictly zero. The second regicortesponds
to numerous fast flow lines reaching the extraction point, with the probability distribution reaching its maxi-
mum. The third region I corresponds to intermediate times and is characterized by a power-law decay. The
fourth region 1\ corresponds to very long traveling times, and is characterized by a different power-law
decaying tail. The power-law characterizing regions I\é related to the multifractal properties of flow in
percolation, and an expression for its dependence on the systerh &zpresented. The constant current
behavior is different from the constant pressure behavior, and can be related analytically to the constant
pressure case. We present theoretical arguments for the values of the exponents characterizing each region and
crossover times. Our results are summarized in two scaling assumptions for the traveling time probability
density; one for constant pressure and one for constant current. We also present the production curve associated
with the probability of traveling times, which is of interest to oil recovery.
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[. INTRODUCTION total rock of the reservoir. This captures the essential features
of the reservoir, while avoiding some of the noncrucial com-

The problem of oil extraction from a reservoir and how plications. An additional advantage to this approach is that it
this extraction evolves in time, is of significance to oil com- makes available to the analysis of oil recovery the wealth of
panies. In order to maximize profits, they must be able tdnformation pertaining to percolation theory. However, we
predict how much oil is recoverable from a reservoir over amust caution the reader that these approximations cannot be
given period of time. This problem can be approached scientaken as the definitive description for oil reservoirs. It is well
tifically by devising a model that accurately predicts the beknown[21-25 that true field-size porous media possess cor-
havior of oil during the extraction process. relations. Our description merely represents a first-order ap-

Most oil reservoirs are complicated geological structuregproximation, which can serve as a base for more comprehen-
[1] composed of several kinds of rock that have been deposive studies.
ited over a long period of time. The configuration of the To fully explain the flow of oil in a percolation cluster,
structure has usually been altered by tectonic activity andeveral physical and geometric parameters of percolation
mineral deposition by aquifer flow. For our purposes, thehave been explored. Among them, there is work on the short-
types of rock comprising any oil reservoir can be separate@st path in a percolation clustg,11,13,26—38 the average
into two categories: high permeabilitgonducting and low-  flow time of a fluid inside a clustdr34], and the full prob-
permeability(insulating. The location of both the conduct- ability distribution of flow time inside a cluster for relatively
ing and insulating rocks is random but also nontrivial, i.e.,short times[12]. The multifractal nature of flow inside a
during extraction it is only through the conducting rock thatcluster has also been the subject of a number of papers
the flow of oil occurs. [35,36].

Based on the random spatial location of the conducting In this work, we focus on one particular technique of oil
rock, a simplifying procedure that has emerged in attemptingxtraction used by companies: secondary oil extraction. It
to predict oil extraction is to model the reservoir by a bondconsists in injecting a fluidwater, carbon dioxide or meth-
percolation cluster with occupation probabilgf2—20. The  ane into the reservoir in order to displace the oil trapped
value ofp corresponds to the fraction of conducting rock to inside. The fluid is injected through an injection well, located
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at pointA of the reservoir, and the mixture of fluid and oil is well A, pushing oil trapped inside toward the extraction well
collected at poinB of the reservoir, where an extraction well B. We call any infinitesimal fluid element of watertiacer.
is placed. The distance between the wells is known as th&he time it takes a tracer to travel frofto B is called the
interwell space rInside the reservoir medium, a mixture of traveling time t For each possible configuration of the res-
two fluids is formed, driven by a pressure difference betweerervoir, there are generally many possible paths to travel from
wells A and B. Here, we consider the case when the twoA to B and each of these paths is callest@eamline Because
fluids have equal viscosities and are both incompressiblegf the multiplicity of streamlines, each particular tracer that
and thus can be considered as identical miscible fluids. Fastarts atA, in general, requires a different tintg¢o reachB.
fluids of different viscosities, see Ref87—-41. To predict The breakthrough timg,, corresponds to the time when the
the amount of oil obtained at a given time, one must underfirst water stream reach&sfor a given realization. We define
stand the evolution of this flow. In particular, it is important P(t,r,L)dt as the probability that a tracer crosses fréro
to know how long the injected fluid starting Atrequires to B in a time between andt+dt, with the condition that
reachB. Since the flow on the reservoir occurs in the set ofand B are separated by a distangein a reservoir of linear
paths that conned andB, knowledge of theraveling time  size L. The functionP(t,r,L) is averaged over all possible
t (also known in the literature as first-passage jimeall the  reservoir configurations connecting the wells. Physically, it
paths in the reservoir determines how much of the displacingepresents the fraction of water tHagcomegart of the ex-
fluid has reache® at a given time and, therefore, what per- tracted mixture at time. Note that whert<t,,, P(t,r,L)
centage of the extracted mixture still corresponds to oil. =0 and the mixture corresponds to oil only. Rert,,, cer-

Some progress has been made in the study of this prohain tracers begin to read® andP(t,r,L)>0, giving a mix-
lem. The case of homogeneous flgwith p=1), when the ture of oil and water aB. As t—o, P(t,r,L)—0, because
reservoir is only composed of conducting rock, has beemo new streamlines readhand this well produces only wa-
treated in Ref[15]. Also, the convective and diffusive re- ter. Cost constraints dictate the point at which the use of the
gimes of a more realistic nonhomogeneous resefgpiecifi-  well is terminated.
cally at criticality p=p.) have been considerdd2,13,15. From our knowledge ofP(t,r,L), assuming that the
The time it takes for any amount of the injected fluid to reachstreamlines do not change over time, we can determine the
B, called the breakthrough timig,, was analyzed in Refs. average production curve @,r,L), which is the ratio of oil
[12,13. The case of different viscosities for the injected andcontained in the mixture coming out of the extraction well at
displaced fluids has been studied before, both for a finitgeimet,
value of the viscosity ratip39—41], and in the limit of very
high ratio[37,3§. In the latter case, a behavior analogous to .
diffusion-limited aggregation in percolation is found. C(t,r,L)El—f P(,r,L)dt. (1)

In this paper, we analyze analytically and numerically the 0
flow inside a two-dimensiondPD) bond percolation cluster
for two different occupation probabilitiesp&E1 and p Equation(1) exhibits the expected features of the mixture:
=p.) and under two different pumping conditionsfatcon-  initially P(t,r,L)=0 and only oil comes out, giving
stant current and constant pressure. The quantity measuredGt,r,L)=1. Ast increasesC(t,r,L) begins to decay as a
the probability distribution of the traveling timeof tracer ~ function of the number of streamlines that reach the extrac-
particles after breakthrough in a percolation ensemble, for #0n well. Ast— o, all water streamlines reach the extraction
given interwell space, and a reservoir of linear dimension well andC(t,r,L)=0.

L. These measurements ultimately allow us to write the prob- For a reservoir being exploited with a pressure differential
ability distributions in concise expressions, valid for all the betweenA and B, such that the total current between these

conditions studied here. two points isQ, the total amount of oilS contained inside
In Sec. II, we introduce the basic mathematical quantitiesthe reservoir can be determined by the expression

the probability density of traveling times and the production

curve, and relate them to the physical picture. Section IlI -

deals with the homogeneous cgse 1, which serves as a ssz C(t)dt. 2)

template to understand the more complicatedp3<1 case. 0

Section IV introduces the inhomogeneous model at criticality . S . . . S
Assuming oil is incompressible and using units for which its

to be used, while Sec. V recounts the numerical results of th o ;
gensny is equal to 1S also represents the accessible volume

model. In Sec. VI, we present analytical arguments explain- ; . : ; )
ing the behaviors observed in Sec. V and these arguments agéthe reservoir. Inserting Eq1) into Eq.(2) and integrating
parts, we obtain

then used to present the final forms for the probability dis- y
tributions under both constant current and constant pressure
conditions.

S ® t - - 0
—=f dt(l—f P(t,r,L)dt)=f tP(t,r,L)dt=(t).
Q Jo 0 0

II. PRELIMINARY CONCEPTS (3)

In secondary oil extraction, a flui¢typically watey is  This result corresponds to thequal-time theoremwhich
injected into the reservoir through an injection or pumpingstates that the average traveling time of tracers inside the
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reservoir is equal to the available reservoir volume divided 10"
by the total external currentl5,42. Equation(A3) of the
Appendix represents the same result, applied to a reservoir il
which all the sand is conducting.

10" | :
IIl. HOMOGENEOUS CASE
The homogeneous casp= 1), which can be analytically g 102 | i

solved, serves as a guide for the more realistic, nonanalyti®d
critical percolation threshold cas@€p.). The p=1 case

was studied in Refl43] using differential equations. Here, 3
we obtain the solutions by conformal mapping, reproducing 10
the results of Ref[43], and add the particular form of the

production curve for the timetsright after the breakthrough. — a=l0 ‘

This section contains the main results of the time behavior, 4 , L .

but the derivations are located in the Appendix. One of the 10™ 10° 10' 10° 10°
results obtained there is thatarries units of 2 and, there- t’=t/r2

fore, in the following,t is replaced by a scaled variable . )
FIG. 1. Production curves for the homogenequsl case in

logarithmic scale fon=2, 3, and 10. The solid curves superim-
t posed to the production curves indicate the asymptotic behaviors of
2 4 regions I}y, llly, and Iy . All the solid lines have been calculated
using the results in the Appendix. For regiop JIEq. (A10) is used
with K given by Eq.(A15); for region Il , Eq.(All) is used, and
for region 1V, we applied Eq(A20). The full circle indicates the
transition timet;,, and the empty circle indicates.

t/

r

We assume that the reservoir is a circle of diameter
centered at the origin and the two poiritandB are located
at (—r/2,0) and ¢/2,0). We study the production curve
C(t,r,L). The ratioL/r is represented by. Usingt’ and\,
the production curve(t,r,L) for a givenr andL is C(t)~t' 18 (7)

C(t',\)=C(t/r2,1N)=C(t,r,L), (5)  We call this region II};. It is present at times;,<t'<ty,
wheret,(\) is defined below.
where we have made use of E412), which expresses the (4) Region IV,. At the transition time ;(\), the reservoir
scaling rule ofC(t,r,L) under rescaling of to t/r?. For the s almost exhausted of oil ar(t’) decays exponentially as
sake of brevity, we refer t€(t',\) asC(t’).

Originally, the reservoir is filled with one kind of fluid
(oil). At time t’=0, we start to inject at poird, with con-
stant rate, a different fluigwate. We measure the produc-
tion curve C(t’) at well B (Fig. 1). We assume that both
fluids are incompressible and have zero viscosity. The flow igyheret/()) is given by Eq.(A19). This is region I\, and it
then described by Darcy's Law=—«VP andV?P=0. A s present inC(t') for all \>1, for timest’>t}. For A
set of regions, and two transition timgfg, andt, separating =1, C(t’,1)=2C(2t’,) — 1 and the reservoir is completely
these regions, appears for the production cut(¢’). We  exhausted at (1/2),,().
now present them. _ . (5) Transition times f;, and t;. Regions I}; and Il are

(1) Region |,. Beforet’ =t;,()), the concentration of in-  separated by a transition orossovettime t},,(\), given by
jected fluid at poinB is zero and only oil exits through point Eq. (A16). Regions IIl; and 1V, are separated by the cross-
B. We denote this time region, wheh<t, ., as region,. over timet)(\), given by Eq.(A18). For A~1, the two

(2) Region Ii;. When the injected fluid reaches the pro- crossover times become of the same order, and regigrisli|
duction well, the concentration of the displaced fluid rapidly nq |onger present. However, as-c,

drops immediately after breakthrough as

C(t')~exp(— (t' —t))/t}), ®)

C(t")~1—K\)Vt' —t,. (6) t1p(N)—1/2 9
This behavior occurs unttl =t;,,(\), when a new time de- and[43]
pendence sets in. The time regigp<t’<t}, is defined as
region lly .
(3) Region lI|. If A>1, for timest’>t;,, there exists a
region of power-law decaf43], ty(\)~\Y (d=3). (10
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That is, as\ increases, region |l appears and the transition 10° : :
time between Il}, and 1V scales as a cubic function of the
geometric factoin.
(@)
IV. MODEL FOR THE INHOMOGENEOUS CASE 10°°
We represent the reservoir as a two-dimensional bond per
colation cluster and choose points £/2,0) and ¢/2,0), de-
noted byA and B, respectively, to be the injection and ex-
traction well positions. Pointé and B are separated by a
geometric distance and the system box has corners at
(x£L/2,£L/2). We construct a percolation cluster by remov-
ing bonds of a squark X L lattice with probability (1-p).
Equivalently, each bond of the lattice is conducting with
probability p and insulating with probability + p. We simu- 10" L : :
late the flow if the point#A and B belong to the same con- 10 10
ducting cluster. Otherwise, we discard the configuration. We t =t/r
restrict our simulations to the critical bond percolation prob- 0

ability p=p.=0.5[2]. We consider both spanning clusters 10 [-

oy
“Q.
~
A

I, I, v,

1 0-10

10 10

10
(dg+m

and finite clusters, and perform averages ovet fHaliza-
tions of the medium.

To model the flow of water, we use the analogy with
electrical circuits, where for each bond, the pressure drop 497
corresponds to the voltage difference and the flow corre-
sponds to the electrical current on the bond. A pressure d|f«-\
ference between poings andB drives the tracer. We choose 5: L M v
the value of the pressure difference according to the condi- c |7c c c
tions desired: for constant pressure, we set a pressure diffel 107 |
ence of 1 betweeA andB for all realizations of the medium;
for constant current, we first measure the resistahoéthe
realization, and the pressure drop is chosen to be equRl to
so that the current for the realization is 1. For each realiza- 5
tion, 10* tracers are introduced at poiAtand then collected 10 102 10° 107 10° 10° 10°
at pointB. The set of all bonds with nonzero current con- t=t/r'8
tained in the percolation cluster for each particular realiza- ¢
tion defines the backbone of the cluster and the backbone FIG. 2. (a) Probability distribution of traveling times for con-
massMyg is the number of bonds that constitute this back-stant pressure conditions for=32. Three simulations are pre-
bone. sented, folL=258,514,1026 (b) Probability distribution of trav-

Mathematically, the “pressure” difference across bonds iseling times for constant current conditions far=32. Three
equivalent to a “voltage” difference, so by solving Kir- simulations are presented, for sizes 258,514,1026.
choff’s laws on the backbone, we obtain the potenfaes-
sure dropsAP over all bonds for a given realization. For a particles do not interact with each other, it is equivalent to
node havings outgoing bonds, the tracer selects each bondaunching one particle at a time into the cluster. This proce-
with a probability dure is known agarticle launching algorithnj15,44].

We determine the probability distribution of the traveling
times P(t,r,L) by counting the number of particles that

(b)

W AP;; [i=1 andi=1 Mg] travel from pointA to pointB, separated by a distancén a
" =4S B box of linear sizel, in a time between andt+dt, over all
zj: AP the particles and all realizations of the medium simulated.
1Y

V. RESULTS FOR THE INHOMOGENEOUS CASE
Here indexi is over theM g nodes and is over thes outgo-

ing bonds, i.e., the bonds for which the pressure at the no i ;
i is larger than the pressure at the other node of the bond. FJ)TJ we define scaled times, andtc to study the flow at both

incoming bondsw;; = 0. The time necessary to cross eachconstant pressure and constant current conditions. For con-
bond ist;; = 1/AP;; and the velocity iw;;=AP;; since each ~Stant pressure, the scaled timetjs=t/r %+ and for con-
bond has unit Iength The total travellng time of a tracer isStant current it igc=1/r%, wheredg is the backbone fractal
the sum of the times corresponding to all the bonds of thelimension andu is the characteristic exponent of the resis-
path connectingd and B, chosen by this tracer. Since the tivity dependence on distance. The current values for these

Following earlier work[13], and in a similar way to Sec.
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TABLE I. Theoretical exponents and exponents obtained by simulation for all the regions and crossovers

for functionsP(tc) andP(tp). ExponentsyV), 42, dg, andd* are defined in Sec. VI and their numerical

values along with their proposed theoretical values can be found in Table Il. The value of expGhevis

obtained as the averagavg) over three simulations, havirlg=258,514,1026.

Constant current

Region Theory Simulation
(D mi _ 1) 4D

e 9¢ m_'”{(dR+gR 2)/(dr—1),/V} 1.56+0.01
=min{1.70+0.13,1.74-0.15
@ minf( v —1)do— gut 2 1)

IV o(A\~32) g m'_”{(’x DoR=0r T2,y 1.75+0.01
=min{1.80+0.40,1.74-0.15

Ve (A—) 0¥ —g¥P~156+0.01 N/A

Ve g¥)=y@=2+allog, L 2.45+0.04 (avg)

Crossoverry) d¥P=d, (dg—1)/dg=1.73+0.07 1.74+0.05

Crossoverr?) d®=d,=2.84+0.10 2.90+0.09

Constant pressure

e g¥=(dg+gr—1)/dg=1.43+0.08 1.41+0.01

IVp g@)=y@=2+allog, L 2.43+0.06 (avg)

Crossoverrp dp=d,=2.84+0.10 2.78-0.15

exponents arelg=1.6432+0.0008 andu=0.9826+-0.0008 (3) region lllp, characterized by a constant value of the
[34,45. Under these new variables, we can define, in analslope, defined as- g(pl), of value —1.41+0.01; and(4) re-
ogy with the homogeneous cafggs. (5) and (A12)], two gion IVp, which corresponds to another constant slope, de-
new probability distributions: fined as—g{?) and measured to be 2.43+0.06. The scaled
crossover time from region Blto region I\, is called 7p .

P(tc M) =P(tc=t/r’ 1)) (12) The results for the constant current distributi®¢t:) are
for constant current conditions and similar to those of constant pressure. However, there is a
difference in that there is yet another constant slope region

P(tp,)\)EP(tpzt/rdB+7‘,1,)\) (13 present. Consequently, we hai@ region |, for times be-

fore breakthroughj2) region Il;, corresponding to times
for constant pressure. Functio”{t- ,\) and P(tp,\) are right after breakthrough and until the first constant slope re-
independent ofr and L, as reflected by the notation, but gion appears, including the maximum B{tc); (3) region
depend only on the ratia. Below, we refer toP(tp,\) as lll¢, corresponding to a first slope, denoted b)g(cl), of
P(tp) and toP(tc,\) asP(tc), with the understanding that value —1.56+0.01; (4) region IV, for a second slope
these functions are still dependent an The two log-log  —g{?, with a value of—1.75+0.01 forA =32, but with a
plots, Figs. 2a) and 2b), contain three simulations each, heavy dependence with respecitoand(5) region Vg, with
corresponding to the probability distributiorB(tp) and  a slope represented by g, measured to be-2.45

P(tc), respectively; both plots were prepared usig32  +0.04. The scaled crossover time betweeg Bhd IV is
and system sizek =258,514,1026. The curves overlap in defined asr{} and between I¥ and \;, as72). All these

both the constant pressure and constant current cases, whighiyes are presented in Table I.

imply the scaling properties Next, we present simulations for the probability distribu-
tions of traveling times for both constant current and con-

—d
P(tc. M) =reP(tr.L) (14) stant pressure and falifferent\ values(Fig. 3). As before,
and the distributions have two constant slope decay regions for
constant pressure and three for constant current. However, as
P(tp,\)= rdBﬂNLP(t'r,L)_ (15 A changes, the positions of these regions change as well. The

detailed shapes dP(tp) and P(tc) can be determined by
A set of regions with different behaviors appears in the twostudying their successive slopes, shown for constant pressure

distributions. For the constant pressure distributi®fip),
we encounter the following(l) Region b, which corre-

conditions in Fig. 4a), and for constant current in Fig().
It is worth noting that regions IH and I\ become shorter

sponds to times smaller than the breakthrough time, beforas\ decreases, with region Hldisappearing foh <4, and

water reaches the extraction we(R) region ll,, appearing

when the first water streams reaBland ending at the onset

of a constant slope region, including the maximunP¢tp);

region IVc for A<2.

Another set of quantities studied are the times for which
the slopes cross over between regions. These crossover times
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7 — A=32

Successive slopes

Successive slopes

{
< NUA | 1] i
=245 N At H
=25 - W

O First crossover "n
O Second crossover ! (b)

10” 10° 10° . 10°* 10° -3.0
t=tr® 10

10' .
t=tir®

FIG. 3. (a) Probability distribution of traveling times for con-
stant pressure conditions for system size514. Four simulations FIG. 4. (a) Successive slopes for the probability distribution of
are presented, fok=4,8,16,32.(b) Probability distribution of traveling times for constant pressure conditions for system Isize
traveling times for constant current conditions for system &ize =514 (shown in Fig. 3. Four simulations are presented, for
=514. Four simulations are presented, fo=4,8,16,32. N=4,8,16,32.(b) Successive slopes for the probability distribu-
tion of traveling times for constant current conditions for system

are indicated by ellipses and boxes in Figs)4nd 4b). For  sjzel =514. Four simulations are presented, kor 4,8,16,32.
the case of constant pressure, Fig. 5 shows the scaling of the

crossover timerp with respect to\, found to berp~A\°P - - -

with dp=2.78+0.15. For constant current, Figs(apand other. By definitiontp=(R/r#)tc, with R being the resis-

6(b) show two crossover timeg) and 7{2), which scale as tance of a percolation clust§,5], which is defined opera-

Tgl)w)\d(cl) and TE:Z)N)\d(CZ) with d(Cl):1_74i0_05 andd(cz) tionally as the voltage obtamed between p0|m$r_1d B

=?2.90+0.09, respectively. The positions of the crossoverVNen a current of value 1 is present. The probability that a

times have been determined by finding the positions of th@ercolation cluster at the critical concentratipphas resis-

inflection points of the successive slope plots. tanceR is given by ®(R)dR, and can be seen in Fig. 8.
Of practical interest is the production curve for constantapproximately,®(R) is given by

current conditions(Fig. 7), because it supplies a tool for

estimating the oil production efficiency. This curve is ob-

tained by using Eq(1), from the probability distribution of

P(tc) [shown in Fig. 8b)]. 0, R<Ri,
V1. DISCUSSION (R ~{ R %, Ryin<R<=Rnax [9r=2.10+0.20]
The distributions of traveling time under constant current 0, f2>~RmaX,
and constant pressure conditions are connected to one an- (16)
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10° .
10" ©
(a) p
10° | :
3
10 Slope=2.78 S
g Slope=1.74
10" | .
10% L O L=258
o L=514 O L=258
© L=1026 o L=514
<© L=1026
1 0
| 10 L
10 10" 10° 10’ 10°
A A
FIG. 5. Crossover times from region gllito region 1\, for o
constant pressure conditions, with a system size lof 10 '
=258,514,1026 and=4,8,16,32.
~ - ~ ~ ~ 4
with Rpin~r* and Ry~ L*. The labels forR,;, as mini- 10" (b) 1
mum resistance, and fé,,,, as maximum resistance, reflect
the scaling ruIesNO'F? with respect to the linear size of a s
cluster, i.e.~,~R~x“ [2]. Therefore, since the interwell dis- ;:;10 3 Slope=2.90
tance isr, r* represents the typical minimum value of resis-
tanceR,,;,. The maximum resistance is determined by the
system size and it scales a8. Function®(R) is not strictly 10 oL=258 |
zero forR<Rp,, or R>Rpax, but this is an acceptable ap- 0 L=514
proximation in our theory. All the results we present for © L=1026
®(R) are in agreement with previous wofk3,46|. 101100 161 10°
As with the rescaled times, we find it convenient to define A
i —R/rH i il-
f':lscaled resisLtan% R;fr [13] a.nd an associated probabil FIG. 6. (a) Crossover times from region {lto region I\, for
ity ®(R)=r"d®(R=Rr*). Function®(R) obeys the same constant current  conditions, ~ with ~ system  sized

scaling asb (R) [it satisfies Eq(16) dropping the tilde sigh ~ =258,514,1026(b) Crossover times from region {/to region
Quantity RminE~Rmin/r# now becomes geometry indepen- Ve for constant current conditions, with system sizés

dent andRy, 4= Ryax/T* scales aRy, . \-. =258,514,1026.
The redefined resistan&ereduces the relation betwegn
andtc to tp=Rtc. Thus,P(tp|R) and P(tc|R) are related

P(t IJPt R)®(R)dR.
by P(tc|R)dtc=P(tp|R)dtp and give (te) (IR D(R)

(18)

FunctionP(tp|R), seen in Fig. 9, is obtained from the simu-
lation of a system with. =1026 andr =32, or equivalently,
with A =32. Each curve represents a different value of the
resistanceR. The detailed behavior of the(tp|R) has sev-

o eral features. The function reaches a maximum at time
Hence, the knowledge of one distribution enables us to cal-

culate the other.

We focus onP(tp) initially. We consider parametd?, the
scaled resistance of the cluster, as the relevant physical quan-
tity dominating the properties d?(tp). Therefore, we nu- as seen in Fig. 10. The scaled crossover time between the
merically find P(tp|R)dtp, which corresponds to the prob- two power-law regions in Fig. 9, defined by the notatign
ability that a tracer particle travels between poitandB in occurs at equal time for all the curves, which indicates that it
a cluster with resistancB (more formally, with resistance is independent of resistané& However, we have performed
within the rangeR to R+ dR). FunctionP(tp) can be con- other simulations with different values &f and have found
structed by the convolution that

P(tc|R)=RP(tp|R). (17

ts~R%R  [dr=2.57+0.02, (19)
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FIG. 7. Production curve for system sike=1026, under con-
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10° ; . . :
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FIG. 9. Probability distributiorP(tp|R) vstP:t/rdB“N‘ for sys-

stant current conditions. Four interwell distances have been usegh, sizel = 1026 and interwell spacing=32 (\ =32), under con-

for N\=4,8,16,32.

ts~\9 [d,=2.84+0.10]. (20)

Regionts <tp<tp is characterized by a power-law decay of
changing slope- vV in the log-log plot(Fig. 9). For times
tp close toty , the slope presents a value closetd, and as
tp—tp , the value gradually changes t01.6 (see Fig. 11
Additionally, as becomes apparent in Sec. VhEY is also

\ dependent, a fact that affects the value of exporgéﬁt
We do not have a satisfactory explanation for this time de
pendence of!), but as a first order approximation, in what
follows, we assume it to be a constant, of vallé)=1.74
+0.15, with the value given by its average over ranje
<tp<tp . The second region in Fig. 9, for timés=t} , is
characterized by a slope of valyé?)=2.41+0.04. In ana-
lytical form, P(tp|R) can be approximated as

-1

10 T .
-3
10T Slope=-2.10
—~—~
=
v
10°
10”7 ‘ :
10' 10° 10° 10’

=

FIG. 8. Probability density®(R) vs R for a simulation with
system sized.=1026 and\ =32.

stant pressure conditions. The most probable traveling tfinend
the crossover timey are indicated for the curve corresponding to
R=64.

0, tp<tp

_ (1) * X (1) —

t57 th<tp<t =1.74+0.1
P('[p|R)~ p " p<tp<tp [¥ 9

.77, te>tp [y(?=2.41+0.04].

(21)

Taking P(tp|R) to be identical to zero forp<tf , although

an approximation, simplifies our calculations considerably
and does not affect the validity of our results. In fact, this is

a very good approximation since there are very few tracers
reaching wellB in this time range, which means that their

statistical contribution is negligible. This simplifying as-

Slope=2.57

100
R
FIG. 10. Scaling of the maximumg(R) of the probability
P(tp|R) vs the resistanck, for a system sizé& =1026, and inter-
well distancer =32 (A=32). The quantityt;(R) scales withR as
RYR, with dg=2.57+0.02.
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FIG. 11. Successive slopes fB(tp|R), with a system sizé

=1026 and\=32. The region corresponding to slopd® of
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TABLE II. Exponents of functionsP(tp|R) and ®(R) deter-
mined through simulations, and also their proposed theoretical val-
ues. The symbol N/A represents not available. The value of the
exponenty'® was obtained as the averag®/g) over three simu-
lations, havingL=258,514,1026.

Exponent Theory Simulation
»& N/A 1.74+0.15
@ 2+allogyol 2.41+0.04 (avg)
dr dg/m+1=2.672£0.002 2.57£0.02
dx dg+ 7 =2.6258-0.0011 2.84+0.10
Or See Ref[13] 2.10+0.20

choice of rescaled times. Sinée~r#, we can assume that
the most probable traveling time at constantscales as
R"98/# and thus,dg=dg/x+ 1. By similar arguments re-
garding the longest possible tracer trajectories inside the sys-

P(tp|R) varies in value, as indicated by the horizontal lines, be-tem, the unscaled crossover time can be related%g #,

tween —1.60 and—2.00. The second slopg(® reflects a more
constant behavior, with value 2.4D.04.

sumption is repeated below f&X(tc|R). The actual behavior
of P(tp|R) for tp<<t} has been studied in detail befdrEs],

indicating thatts ~X\9%< would haved, be equivalent talg

+ . However, our numerical simulations do not have suffi-
cient accuracy to answer this question definitively.

The properties just described f&(tp|R) and use of Eq.
(18) determine the form oP(tp) as we now prove for each

Wher_e it was f_ound to_ b_e that _of a stretched exponentialseparate region identified in Figgaand 2b) (see also Sec.
carrying negligible statistical weight in our present calcula-v). The analytical expressions for all the predicted exponents

tiOI"IS.. In Sec. VIE, we incorporate this resglt into the full pertaining to the distributioﬁ)(tp) and their numerical val-
scaling ansatz foP(tp) andP(tc). The numerical values of yes are given in Table I.

the exponents ofP(tp|R) and ®(R) are summarized in
Table 1I.
The similarity in the values oflz and the combination

1+dg/u is worth some consideration. It has been proposegy

A. Region lll p

To useP(tp|R) for the calculation oP(tp,\), according
Eqg. (18), we need to take into account its normalization

elsewhere[12] that under constant current conditions, thefactor, which isR dependent. To obtain this factor, we inte-
unscaled most probable traveling time scales with respect tgrate the distribution and equate it to unity, using the follow-

r asr%. Now, for a fixed value of resistand® at constant

ing assumptionsP(tp|R) is strictly equal to zero for times

pressure conditiong§=Rt:), we expect the unscaled most tp<t:~R'R and, as a consequence of the previous condi-

probable traveling time to scale 8%+, where scaling rule

tion, the lower limit of integration is§ ~ R, The final form

R=Rr* has been used. These considerations justify ouof P(tp|R) is

fo,
— (1)
1 (t|
~dn | dn ’
P(tp|R)~{ RTIR
RIRO =41 tp Y
RIr E

tp<<tp
th<tp<ty [yM=1.74+0.15

(22
tp>t5 [y(?=2.41+0.04].

Regarding®(R), its normalization has no impact on the define the limits of integration iR that apply to region Ii .
variables in which we are interested and is therefore not preFhe R dependence of functio®(tp|R) is contained in its

sented.
To perform the integration of Eq(18), we must first

normalization factor, and also in the fact that this distribution
is nonzero Whertp>t’F‘,~RdR. Therefore, for a given time
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tp, the integrand of Eq.18) is nonzero for aIR<t§,’dR. The
lower limit of the integral isR,,;,, but it is irrelevant as
regards thep scaling form. For functiorP(tp|R), only the
first scalingt;y(l) is used, since region Hlis limited to tp
<ty . Then, using Eqs(16), (22), and the convolution Eq.
(18), we obtain

1/d
t

P(tp)~t;7(l)f P R IRCMITDR-GRJR (23

for tp=<tp . After integration, the exponent of is positive,

which implies that the leading term for the integral is the
upper limit of integration. Substituting this limit yields the

scaling formtfjde*QR)/dR. Therefore, since in region Bl
_q®
the scaling isP(tp)~t, %" , we obtain

g grtdeml

P dR (24)

B. Region IVp and crossover timerp

For timestp>t} , distributionP(tp|R), regardless of the
value of R, decays with a power-law of, " The upper

PHYSICAL REVIEW E 67, 056314 (2003

@) (2)

P(tp)~t, % =t 7", (29

giving
g=912. (26)
The actual numerical value gf? is discussed in Sec. VI D.
The crossover time; separates regions Hland 1Vp.
Therefore,7p=t5 , which implies that
'7'|:>"’)\d><

(27)
and

dp:dx . (28)

C. Mapping betweenP(tp) and P(tc¢)

Based on Eq(17), the differences observed in the curves
for P(tp) andP(tc) are caused by a shift of cun(tp|R)
on a log-log plot by—logR. Function P(tc|R), defined
from P(tp|R) by Eq. (17), is characterized by two power-
law decays with exponents ) and — y{?), a maximum at

limit of integration is determined by the largest resistanceimet&=t5/R~R% 1, and a scaled crossover time between
possible within the conditions of the geometry, which wethe two power-law regions &g =t5/R~R™t; . In analyti-

denote byR,.x, and it is independent df,. Therefore, by
convolution Eq.(18), we obtain

(0,
— (1)
1 te | 7
P(tC|R)N< RdR—l RdR—l !
RIRVY - ¥?)
L RdR—l RdR—l

cal form,P(tc|R) can be approximated by an equation simi-
lar to Eq.(22),

-2

te<tg
ti<te<ts [yM=1.74+0.15]
(29)
o te>tg [y?)=2.41+0.04],

where the normalization factor has been obtained by assumgsllows: asR increasest¢ increases, but: decreases. For

tions analogous to those used fB(tp|R). To explain the
different power-law regions in the behavior®ft:), we use
the convolution

P(tc)=f P(tclR)tb(R)dR:f P(tp|R)RP(R)R,
(30)

where Eq.(17) has been taken into account.
In Eq. (29), timesty andt{ are dependent oR and,

therefore, the size of the scaling regiBit| R)~t5“/(l) isR

large enougtR, denoted here bRy, these two times coin-
cide, and only the scalin@’m is present. The resistanBg
scales as a function of the crossover timg as Ry
~(tp)Yr and, ultimately, in terms of as R, ~\%</dr,
Also, there is a specific time, denoted hereNbdyassociated
with this point of coincidence, where only the power-law
decay withtg’m survives. InsertindR,, into t5~R%~1 (or
alternatively intots ~R™'t}), we obtain

M ~ )\ (dr~1)dx /dg (31

dependent as well. This is an important difference between
the constant current and constant pressure cases, because it igt is now possible to explain the existence of regiong Il

the cause of the existence of regiong ldnd 1V with ex-

and IVc. For timestc<M, the convolution integral in Eq.

ponents that differ from each other and from the exponent of30) has an upper limit obtained by the relatitg~ R~ *
region lll,. The R dependence of the size of the region is asand, consequently, the expression becomes
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1U(dg—1

)
P(te)~t " J e "RG0+ Pdr-D-0rgR

(32

If the exponent oft; after integration is positive, only the
upper limit is relevant and the integral yieldB(tc)

~1279%R=9R/(dr"1)  Otherwise, the integral is finite and
1
P(to)~tg""
g
P(tc)~t %, implying that

For region Ik, the scaling behavior is

The predicted value fog is different than the measured

dR+ gR_ 2

dR_ 1 (33)

gd= min{

PHYSICAL REVIEW BE7, 056314 (2003

bound, denoted here by. The form of N is determined
throughP(tc|R=Ry,;,) and it is equal td for this particu-
lar distribution, or
N~t&~Rytts~N9x, (37)
For tc>N, we haveP(tC|R)~t57(2). Using this form of
P(tc|R) in the convolution Eq.(30) we obtain P(tc)
2
~t57( ). The upper limit of integration is agalR,,,x- Thus,
for region \, we have
g&=92. (38)

This exponent is equal to that obtained for region IV

Now we derive the expression for the first crossover time

quantity, although it is within the error bars. This discrep-M. which separates regionsdliand 1. According to Eq.

ancy is associated with the simplifications made in ou
theory, which do not reflect the fact that, fog<M, the
highest contribution td>(tc) comes from lower values d®,
and®(R) in this range decays with an exponeyt smaller
than 2.1[note the rounded shape @f(R) near its peak in
Fig. 8]. Therefore, with a smaller effective value g, the
exponentg!y) acquires a smaller value as well.

As it follows from the behavior ofP(tp|R), for times

_ (1
tc>M, P(tc|R) scales asc " for small values oR and as
2 . N
tc " for largerR. The transition between the two situations

occurs whentc=t¢, and since this last quantity scales as

R, tc~R™! and the upper limit of the integral for the

1
regimetgy( Vi R~tct. Therefore, the convolution E¢B0)
is written as

-1
P(to)~tg y‘“f‘c R (dr-1D+¥Ddr-1)-0rg R

R
+tg V(Z)J :axR*(dR* R e e e [~
tc

(39

Once again, by considering the value of the exponents aft
_g@
integration, given tha’[F’(tC)fvtC“j’C , we obtain for region
V¢
g@=min{(y'V-1)dz—gr+29M}. (39
This result is valid for a given value of due to the depen-
dence ofy(Y) on this parameter. At the limit of very large
application of the equal-time theorem indicates &t ap-
proacheg, or
9&—gf) -], (36)
which corresponds to E@59). See Sec. VI E for details.
Becauseti ~R ™!, asR decreasest: increases. Conse-
quently, the transition oP(tc|R) to the scalingP(t¢|R)
2
~t57( " occurs at later times for small& Since the mini-
mum R possible isRy,, the crossovets has an upper

(31)

Tg:l): M ~ )\ 9x(dr—1)/dgr_ (39

Comparing this with the definition fOf(Cl) given in Sec. V,
we obtain
dd=d, (dg—1)/dg. (40)

The second crossover, according to E87), occurs at
72)=N and obeys the scaling

&~ N9, (41)
which, in turn, implies that
dP=d, . (42

D. Long-time regime for constant pressure
and constant current

As a first approximation, we can assume that functions
P(tp) andP(tc), for a given ratian, have no dependence on
the system sizé&. However, our numerical simulations sug-

est a weak dependence of expon andg® on the
& p p de

system size.. These exponents express only the long-time
behavior(large tp andtc or alternatively, regions I and
V) of the distributions. The values of these exponents were
found to be the same, since basff) andg®® are equal to
y3). Consequently, this means tha?) is a function ofL.
Based on the multifractal nature of flow in porous me@ial

and, particularly, on the results obtained in R¢®&6,47], we
propose an argument on hoyW? depends orl. Since the
scaling forms foP(t;) andP(tp) are the same at long times
(regions I\ and \g), for the rest of this section we intro-

duce notationt to represent bothp andtc, because the
following argument applies to both distributions.
Barthdemy et al. [36] studied the nature of the distribu-
tion of tracer velocities{v;} in a cluster connecting two
points in percolation, and found that it has multifractal prop-

erties. ParticularlyP(v;)~v, "% wherev, is the ve-
locity of the tracer through bonid anda is a constant. What
is the consequence of this distribution in terms of our prob-
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-23 2 1
. Y#=2.08+08% ——. (46)
10
24 83
© The agreement between the predicted and the empirical re-
sults suggests that we have reached a regime where the trav-
=25 eling time values are dominated by the times on these bonds.
€>_ This regime starts for timesy at constant pressure an@z)
1 at constant current. These times, in turn, scale Withvith
-26 exponentsdp=2.78+0.15 andd®)=2.90+0.09, which are
close to each other and to the quantitiesanddg + . This
=27 o A=8 scaling is consistent with the hypothesis that the long-time
o A=4 regime appears when most of the fluid inside the cluster has
been displaced and only the slowest parts of the cluster still
-2-30_3 0:4 0:5 0:6 0:7 0.8 preserve some original fluid. Since there are only two stag-

1log. L nation points for the homogeneous case of SecP(t,) is
E10 characterized by an exponential decay. This is in contrast to

FIG. 12. Value of the tail exponent ¥ as a function of th(nT p=p. case where a multifractal spectrum of stagnation

1/logyeL, whereL corresponds to the system size of the simulation.POINtS is present, generating a power-lawfgt). However,
Each symbol represents the succession of valueé®for a given  the long-time regime of the homogeneous case emerges in a
ratio N, with the longest curve corresponding to ratio 4 and thetime that scales as®, with d,=3, and since ap=1, dg
shortest to ratio 32. The thick straight line represents the least 2, andﬁzl, this becomes consistent with our picture.
squares fit of the\=4 case, which yields a line of valug® It is important to point out that the power-law behavior

=2.08+0.81/log ., as stated in the text. we observe implies that themoments(t&) of the distribu-
. . ~ tion P(tc) [and the equivalent foP(tp)] diverge for all
lem? From the rules of the simulation, we haye 1/v; and,  gyfficiently largek. This appears to be in contrast with earlier
therefore~, the d|str|9ugon§ of both time and velocity are re~,qrk [15], where the high current limiQ— has finite
lated by P(v;)dv;=P(t;)dt;. If a tracer travels through a moments for alk in a finite system. However, this apparent
bond with a velocity; that is among the lowest velocities on discrepancy is in fact due to the different conditions that are
the realization, then it is true that<T; i.e., the total time of ~being considered. In Ref15], both convective and diffusive
the tracer is approximately equal to the time it takes to passffects are present, and all tracers on a system are able to
the slowest bond. TheR(T)~P(1;) and trave_l and eventually leave, even from_ very sl_ov_v bonds,
making the effect of the stagnation points negligible, and
e e~ dy; generating an exponential decay for the traveling time prob-
P(t)~P(t,))=P(v))—=. (43 ability distribution. On the other hand, if no diffusion is
dt, present, as it is the case here, the presence of the multifractal
gistribution of the velocities in the bonds generates a power-
Faw tail that makes the moments divergent; the tracers cannot
diffuseaway from the stagnation points.

Given that the tracers choose to travel through a particul
bond with a probabilityproportional to the value of the ve-
locity in that bond, we then have to modify the distribution
P(v;) for v;P(v;) to take this into account. Therefore, we
obtain a new distributionP(v;)=v;P(v;), which equals
P(vi)=via/'°91°L. The corresponding time distribution to  The results obtained in Secs. V and VI allow us to write a
full set of scaling ansatz for the traveling time probability
distributions under both constant current and constant pres-

E. The full scaling forms of P(tp) and P(tc)

P(v;) is calledP(t;) and satisfies

do. 1 sure conditions. The ansatz takes into account the regions
P(t)=0v.P(v,)— :U?"°910L~_2 =t-2-alad  (44)  presentin each of the distributions, as well as the short-time
[ t; cutoff (beforet’ =t;,). For the cutoff, we follow closely the

) _ o - _ arguments presented in R¢L3], where this behavior is ac-
Since we are treating the case fert;, P(t)=P(t;). Prob-  counted for by the use of a stretched exponential function.
ability distribution P(t) is the distribution satisfied for very For constant pressure, we write

largeT in our problem, which means th&(t)~T~ """, or

)
-9
y@=2+allog;dL. (45) P(tp)~t, ™ Fp(lp)G

tp

E>, (47)
In Fig. 12, we find the value of/(? as a function of . .
1/log;oL, measured from simulations, for several values ofwhere functions=p(x) andG(x) have the behaviors

the ratioh. Data regression for these results yields the ex-

pression Fp(X)~exp —bx %), (48)
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and

const, Xx<<1

G(x)~[ (49)

x—9+ep) x> 1,

and constantb and ¢ are fitted by the data. Fap, the data
extracted from Fig. @) yield ¢=—1.42+0.03. Exponents
g, g2, andd, are given by Eqs(24), (26), and (28),
respectively. In the unscaled coordinatéXt,r,L) under
constant pressure is

(1)

P(t,r L S IR B PN :
(tlr! ) rdB+;‘ P rdB+;, Ldpr_dp+dB+;L ’

(50

For the case of constant current, we have

e te te
P(tc)~t. "¢ Felte)Hy NS H> @ (51)

FunctionF(x) corresponds to a stretched exponential

Fo(x)~exp —cx %), (52)
where again constants and ¢ are fitted by the data. By
completing the necessary transformations on Figp),2ve
obtain #= —1.49+0.01. Functiondd,; andH, are given by

const, x<<1
H,(x)~ 53
1(X) @) x>1 (53
and
const, x<1
H,(X)~ 54
2(X) N R Sy (54)

Once again, exponeng’, g{?), g, d), andd{ are
given by the Eqs(33), (35), (38), (40), and (42), respec-
tively. For the unscaled coordinates, we find

79(1)
P(t,r,L ! ) F t
( Wy ) rTB C rTB

t

2 2 .
0P —dD+dq

Hy

t
Y 6D I 65 I
del r—dc1 +dg

X H, (55)

An additional constraint that E¢51) has to satisfy is that

PHYSICAL REVIEW BE7, 056314 (2003

separated by a distancgfor a given system of sizeX L, is
treated in Ref[48], and it is predicted that

L%
(MB>~W, =0.37+0.02. (56)
Therefore, applying the equal-time theorem,
© (M)
=t~ =L \U¥
(te)= 4~ gy " (57)

Calculating(tc) from Eg. (51), we find that it scales as a
power of\ ¢, where& depends on the exponents involved in
Eq. (51). Noting thatg{?) has a decreasing value thatNs
dependent and that this regime extendsﬁféﬂ\d& to sat-
isfy Eq. (57), ¢ must satisfy
¢=dg—y=(2-g)dx, (58)
which implies thatg{®)~1.55, very close to the value of
exponentg(cl). Therefore, we expect that
g&—gt) [A—oc] (59
and the power-law regions Hland IV become one region,
with exponeng!?) extending from the maximum d#(tc) to
the crossover time{?).
Finally, regarding the validity of our results in true field-
size porous media, we hypothesize that the form of the scal-
ing ansatz presented still holds, even if the values of the

exponents change. This issue must be resolved by additional
studies.

VII. CONCLUSIONS

We establish that the distributions of traveling times obey
the general scaling relationB(t,r,L)=(1/r*)P(t/r%1)\),
and the production curve satisfi€(t,r,L)=C(t/r?1\).
For constant pressure conditioas; dg+ 1, and for constant
current,z=dg . This relates the scaling of the traveling time
to the scaling of two basic cluster properties: backbone and
conductivity. ~

Using the rescaled times=t/r%"# andt.=t/r%, we
have determined the dependenceR{tp)=P(tp,1\) and
P(tc)=P(tc,1\) on the geometric parametar and have
observed several power-law regions. We obtain the expo-
nents for the power-law regions and crossover times of
P(tp) and P(tc) by convolution of functionsP(tp|R) and

of the equal-time theorertwe treat the scaled coordinates (D(ll)?)’ GXP(E?SSGOI as functions of exponegts, dg, dx,
examplg. The flow of tracers occurs only on the backbone of 7', @ndy**’. The crossover times themselves scale as pow-
the percolation clusters, which has volume proportional tcers of ratiok. We propose relations betwee andd,. and

Mg, and the total tracer curre@ is unity. Since we use all
backbones that connect poindsand B, without requiring
that they percolate throughout the entire systemL, we
expect that the average tinj.) scales with\ exactly in the
same way agMg) scales for a given.

The problem of the distribution of backbone masbbs
of a percolation cluster defined between two poitandB,

the fundamental percolation exponedtsand x. Using ar-
guments based on multifractality, we also propose the rela-
tion y®=2+allog;sL. The exponenty!) is not yet ex-
plained(see Table Ii. The full scaling forms ofP(tp) and
P(tc) are expressed in two scaling ans@Egs. (47) and
(51)] that contain all their observed regions and crossover
times.
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For the longest times, the crossover occurs for kel r2 ( ¢cos¢>
- . (A5)

case at a time that scales &%, with d,=3, which can be t= " SN
interpreted aslz+ . under homogeneous conditions. For the 2siné

P Pc case, the crossover to the long-time region scales ag st has dimensionality of area and, therefore, in the fol-
\%x, regardless of the pumping conditiof@onstant c~urrent lowing, we use the scaled timié=t/r2. Accordingly,C(t,r)
or constant pressuréWe hypothesize that, anddg+u are  has the scaling property
the same exponent and propose that the transition to the long
time regime occurs similarly at different values of the occu- C(t,r)=C(t'=t/r?1). (A6)
pation probabilityp. ) )

In the interest of briefness, we uge(t’)=C(t’,1). For

T :
ACKNOWLEDGMENT small ¢—0, t" is given by the expansion
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APPENDIX: ANALYTICAL SOLUTION

!
FOR THE HOMOGENEOUS CASE For large¢—m, t'—¢ and

B The eggaflons for the _statlonary |deaL flcﬁ%B] areV _P t = 3[1+O((7T— #)?)]. (A8)
=0 andv=VP, whereP is the pressurey is the velocity, 2(m— )
andV? is the Laplace operator. In two dimensions, the solu-
tion is given by an arbitrary analytical functidigz) of com-  The breakthrough timg,, corresponds to the fastest stream-
plex variable z=x+iy, and P(x,y)=Ref(z), vy line $=0 and thus is given by
=Ref’(2), andv,=—Imf’(z). The equation of a streamline 1
is given by ¢=Imf(z), where ¢ is a parameter. The flow t=limt'(¢)==. (A9)
between two well#\ andB, located at points{r/2,0) in the $—0 6
circular reservoix®+y2<L?/4, is given by

Immediately after breakthrough, the concentration of oil
L? In( L2> drops as

Z+ —

r
f(z)=In| z 5 In T z

2r

| r
nzz

C(t")=1-Kyt'—t, +O((t'—1},)%?,  (A10)

The circular boundary of the reservoir satisfies the equatioihereK=15/mr. Whent’— ¢, the concentration decays as
é=m. The fastest streamline connectidgand B corre- & power-law,

sponds togp=0 and an arbitrary streamline forms anglgs 113

and (7 — ¢) with the x axis at pointsA andB. The traveling C(t')= ( 1 ) n O( i) _ (A11)
time along a streamline can be found as a contour integral 272! t’

B dz BdX Bdy The crossover time from the initial fast decay to the slow
t= f —=| —=| —, (A2)  power-law decay is approximately equal to titjg, defined
Ati(z) JAUx ATy as the time when the concentration drops by a factor of 2, or

. _ o t=t(wl2)=112
wheref'(z) is the complex conjugate 6f(z). The traveling In the bounded case, the production curve for scaled time

time t(¢) can also be found by differentiation of the area yepends only on the ratio=L/r, and similar to the result of
S(¢) between two streamlines corresponding to differentEq_ (A6), we find that

values of¢,
C(t,r,L)=C(t'=t/r?,1)\). A12
4S() ( )=C( ) (A12)
()= W (A3) Production curveC(t’,\)=C(t'=t/r?,1\) can be ex-
pressed via elliptical functions. Integrating E@2) along
which is another manifestation of the equal-time theoremthe fastest streamline gives
The concentration of oil arriving at we at timet, i.e., the

production curveC(t,r), is given by the inverse function , 1A+ (1-0D)° M(1-2P)? q A—1
¢(1) b 121422 8(1+\2) \A+1)’
7 () (AL3
cn=—r—-: (A4 Wwhich in the limitA— yields
In the unbounded cade—c, the streamlines are circles and TS -2 2
t(¢) is given by an elementary formula tor=g ~ 15" o). (AL4)
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ConstantK in the initial fast decay can be obtained by ex- wheret/ andt; are functions of,

panding the equations of short streamlines in powerg of

resulting in lengthy elementary functions &f Expanding 1A(N2=1)2 3

the latter in powers ok ~?! yields ty=5c ———=—=+0(A A18
15 10
K:£ 1+ =N "?+0o(N"?)|. (A15)  and
T 7
The half-time is given by integration along thg=7/2 2(2—3N—3\2+ 1003+ 3\%—3\5)
streamline, to=t; > 5
3N(A°—-1)
1 (1+23?)3 4 )
ti,zz—{ 1+\2— arcsir{ ] 16A(N%+1)
4 4\ 2y /\? -2 +In——-—-—|. (A19)
(L4+N)VA+6+A (N 1)(A+1)?
1 _
= §+O()‘ ?). (A16)  This yields the exponential decay Gf(t’) att’—oo
Finally, ast’—« and ¢—r, the entire reservoir is swept 1 (t'—tl)
out except in the vicinity of the two stagnation points C(t’)=;ex — " [1+0(1)], (A20)
¢

(£L/2,0), where the velocity is equal to zero. Integrating
Eq. (A2) along the reservoir boundary and the segments con- ) S ,
necting the wells and stagnation points, with the exception oivheret; plays the role of the characteristic time.tjf>t;,,

a small vicinity of the stagnation point of ordefr— ¢,  (A>1), anintermediate power-law decay is present between
gives t1, andt;, with the scaling form of Eq(A11). In this case,

t'=t,—t;In(m—¢)+0(1), (A17)

t; also plays the role of the crossover time from the power-
law to the exponential decay.
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